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Abstract
The wavefunctions of a quantum isotropic harmonic oscillator modified by
reflecting barriers at the coordinate planes in N-dimensional space can be
expressed in terms of certain generalized spherical harmonics. These are
associated with a product-type weight function on the sphere. Their analysis
is carried out by means of differential-difference operators. The symmetries of
this system involve the Weyl group of type B, generated by permutations and
changes of sign of the coordinates. A new basis for symmetric functions as
well as an explicit transition matrix to the monomial basis is constructed. This
basis leads to a basis for invariant spherical harmonics. The determinant of
the Gram matrix for the basis in the natural inner product over the sphere is
evaluated. When the underlying parameter is specialized to zero, the basis
consists of ordinary spherical harmonics with cube group symmetry, as used
for wavefunctions of electrons in crystals. The harmonic oscillator can also be
considered as a degenerate interaction-free spin Calogero model.

PACS numbers: 02.10.Ab, 02.30.Gp

1. Introduction

There are interesting families of potentials invariant under permutations and change of signs
of coordinates. The most basic one is a central potential perturbed by a crystal field with cubic
symmetry. Another important example is the spin Calogero–Moser system of B type. In this
paper, we study a potential which can be considered as an N-dimensional isotropic harmonic
oscillator modified by barriers at the coordinate hyperplanes, or as a degenerate Calogero–
Moser model with no interaction. The main object is to study invariant harmonic polynomials,
which when multiplied by radial Laguerre polynomials provide a complete decomposition of
the invariant wavefunctions. This is made possible by use of the author’s differential-difference
operators and the construction of a new basis for symmetric functions.
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We consider generalized spherical harmonic polynomials invariant under the action of
the hyperoctahedral group BN acting on RN . Let N0 = {0, 1, 2, . . .}, the set of compositions
with N parts is NN

0 ; for α ∈ NN
0 let |α| = ∑N

i=1 αi, α! = ∏N
i=1 αi! and (t)α = ∏N

i=1(t)αi
, (the

Pochhammer symbol is (t)n = ∏n
i=1(t + i − 1)). Denote the cardinality of a finite set E by

#E. The set P of partitions consists of finite sequences λ = (λ1, λ2, . . .) ∈ ⋃∞
N=1 NN

0
satisfying λ1 � λ2 � · · · � 0 and two partitions with the same nonzero components are
identified. Then Pn = {λ ∈ P : |λ| = n} for n = 1, 2, 3, . . . . For a partition the length
l(λ) = #{i : λi � 1} is the number of nonzero components. For a given N we will need
the partitions with l(λ) � N , denoted by P (N) = P ∩ NN

0 , and P (N)
n = Pn ∩ NN

0 . One
partial ordering for partitions is given by containment of Ferrers diagrams: thus µ ⊂ λ

means µi � λi for each i. The notation εi = (0, . . . ,
i

1, . . .) for the ith standard basis vector
in NN

0 (for 1 � i � N) is convenient for describing contiguous partitions; for example
λ + ε1 = (λ1 + 1, λ2, . . .).

For x ∈ RN and α ∈ NN
0 let xα = ∏N

i=1 x
αi

i , a monomial of degree |α|. Let
P(N)

n = span
{
xα : α ∈ NN

0 , |α| = n
}
, the space of homogeneous polynomials of degree

n � 0 in N variables. The Laplacian is � = ∑N
i=1

∂2

∂x2
i

, and the Euclidean norm is

‖x‖ = (∑N
i=1x

2
i

)1/2
. Fix the parameter κ � 0.

We will be concerned with the operator � + 2κ
∑N

i=1
1
xi

∂
∂xi

. It is associated with the

Calogero–Sutherland model with the potential function V (x) = ω2‖x‖2 + κ(κ − 1)
∑N

i=1
1
x2

i

(with ω > 0). This is an N-dimensional isotropic harmonic oscillator modified by barriers at
the coordinate hyperplanes; or it could be considered as a degenerate form of the type-B spin
model for N particles with no interaction. The spin model with interactions and reflecting
barriers was studied by Yamamoto and Tsuchiya [11]. With the base state

ψ(x) = exp
(
−ω

2
‖x‖2

) N∏
i=1

|xi|κ

we obtain the conjugate of the Hamiltonian, for any smooth function f on RN

ψ(x)−1

(
−� + ω2‖x‖2 + κ(κ − 1)

N∑
i=1

1

x2
i

)
(ψ(x)f (x))

=
(

−� − 2κ

N∑
i=1

1

xi

∂

∂xi

+ Nω(2κ + 1) + 2ω

N∑
i=1

xi

∂

∂xi

)
f (x).

The ZN
2 version of the differential-difference operators introduced by the author ([2], or

see [5, ch 4]) are the fundamental tools for analysing this eigenfunction problem. The action
of the group BN on RN induces an action on functions, denoted by wf (x) = f (xw) for
w ∈ BN. For 1 � i � N let σi denote the reflection

(x1, . . . , xN)σi = (x1, . . . ,−xi, . . . , xN)

and define the first-order operator Di by

Dif (x) = ∂

∂xi

f (x) + κ
f (x) − f (xσi)

xi

for sufficiently smooth functions f on RN . The Laplacian operator is

�κ =
N∑

i=1

D2
i
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then

�κf (x) = �f (x) + κ

N∑
i=1

(
2

xi

∂

∂xi

f (x) − f (x) − f (xσi)

x2
i

)
.

If f is even in each xi (that is, ZN
2 -invariant) then �κf (x) = �f (x) + 2κ

∑N
i=1

1
xi

∂
∂xi

f (x). If
we modify the above Hamiltonian to

H = −� + ω2‖x‖2 + κ

N∑
i=1

κ − σi

x2
i

(1.1)

which is identical to the previous one when acting on ZN
2 -invariant functions, we obtain

ψ−1Hψf (x) =
(

−�κ + 2ω

N∑
i=1

xi

∂

∂xi

+ ωN(2κ + 1)

)
f (x).

The eigenfunctions of this operator can be expressed as products of radial Laguerre
polynomials and homogeneous harmonic polynomials.

Definition 1. For n � 0 the space of harmonic (sometimes called h-harmonic) homogeneous
polynomials of degree n is Hn = {

f ∈ P(N)
n : �κf = 0

}
. Let H0

2n = {f ∈ H2n : σif = f, 1 �
i � N}; this is the space of ZN

2 -invariant harmonic polynomials, even in each xi, 1 � i � N .
The subspace of H0

2n consisting of polynomials invariant under permutation of coordinates is
denoted by HB

2n.

It is not hard to show that if f ∈ Hn then L
(n+N/2+Nκ−1)
s (ω‖x‖2)f (x) is an eigenfunction

of ψ−1Hψ with eigenvalue ω(2n + 4s + N(2κ + 1)) (this calculation uses equation (3.1)). So
combining bases for each Hn with Laguerre polynomials provides a basis for the polynomial
eigenfunctions (positive energy) of ψ−1Hψ . The use of functions of this type in the general
Calogero–Moser models of types A and B is discussed by van Diejen [1]. In Cartesian
coordinates the eigenfunctions of ψ−1Hψ can be expressed as products of generalized
Hermite polynomials (see [5, p 25]), namely

∏N
i=1 Hκ

αi
(ω1/2xi), α ∈ NN

0 . More details on
the BN -invariant basis produced by these polynomials are given in the last section.

The classical motion problem corresponding to H is easily solved: in the one-dimensional
case the particle with mass 1 at s ∈ R satisfies

(
d
dt

)2
s(t) = − ∂

∂s
V (s) = −2ω2s +2κ(κ −1)s−3

with the solution (for s > 0, κ > 1)

s(t) = (q + a sin(23/2ω(t − t0)))
1/2 q = (a2 + κ(κ − 1)/ω2)1/2

where t0 is an arbitrary phase shift, a � 0 is arbitrary and the energy is 1
2

(
ds
dt

)2
+V (s) = 2qω2.

Primarily we will study the invariant functions associated with �κ ; the invariance is with
respect to the Weyl group of type B, thus the functions are invariant under sign changes {σi}
and permutations of coordinates. Such functions are expressed as symmetric functions of the
variable x2 = (

x2
1, . . . , x

2
N

)
. Note that a special case of this study is the problem of spherical

harmonics on R3 which satisfy B3-invariance, appearing in the wavefunctions of electrons in
crystals. We will construct an explicit basis for these polynomials, but unfortunately it is not
orthogonal. There seems to be a good reason why an orthogonal basis has not yet been found:
let Rij = xiDj −xjDi (then Rij�κ = �κRij , and

√−1Rij is an angular momentum operator),
and let Sn = ∑

1�i<j�N R2n
ij , then S1 is the Casimir (or Laplace–Beltrami) operator, for each

n the operator Sn is self-adjoint in the natural inner product on the sphere (defined later) but
S2,S3 do not commute, already for N = 3. So the usual machinery for constructing good
orthogonal bases (such as Jack polynomials) does not work here. (The exploratory phase of
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this paper involved computing with all of the plausible BN -commuting self-adjoint operators
of degrees 2, 4, 6; none of them had rational eigenvalues (in Q(κ)) which would be necessary
for explicit formulae.) The conjugate

ψRijψ
−1 = xi

∂

∂xj

− xj

∂

∂xi

− κ

(
xi

xj

σj − xj

xi

σi

)
commutes with the Hamiltonian H (see Taniguchi [9] for a more general treatment of
commuting operators in the context of r−2-type potentials). By straightforward calculation

S1 =
∑

1�i<j�N

R2
ij = ‖x‖2�κ −

(
N∑

i=1

xiDi

)2

−
(

N − 2 + 2κ

N∑
i=1

σi

)(
N∑

i=1

xiDi

)
.

Thus S1 has the eigenvalue −2n(N − 2 + 2n + 2Nκ) on H0
2n.

2. A basis for symmetric functions

In this section the number N of variables is not specified, with the understanding that it is not
less than the length of any partition that appears. We use the notation of Macdonald [8] for
symmetric polynomials in the variable x ∈ RN . Let SN denote the symmetric group on N
objects, considered as the group of N × N permutation matrices, acting on the left on NN

0 .
For any α ∈ NN

0 let α+ denote the unique partition wα ∈ P (N), for some w ∈ SN (the sorting
of the components of α in nonincreasing order; w need not be unique).

Definition 2. For λ ∈ P (N) the monomial symmetric function is

mλ =
∑{

xα : α ∈ NN
0 , α+ = λ

}
summing over all distinct permutations of λ. The elementary symmetric function of
degree 1 is

e1 =
N∑

i=1

xi.

It turns out that the basis elements for invariant harmonics are labelled by partitions with
the property λ1 = λ2; that is, dim HB

2n = #
{
λ ∈ P (N)

n : λ1 = λ2
}
. Further the formula for

the projection onto harmonics uses powers of ‖x‖2 = e1
(
x2

1, . . . , x
2
N

)
. This leads to the

following definition of a basis for symmetric functions well suited for the present study.

Definition 3. For λ ∈ P (N) the modified monomial symmetric function is

m̃λ = e
λ1−λ2
1 m(λ2,λ2,λ3,...).

We will show that {m̃λ : λ ∈ P (N)} is a basis for the symmetric polynomials on RN and
the transition matrix to the m-basis has entries in Z, is unimodular and triangular in a certain
ordering. One direction is an easy consequence of the multinomial theorem. We use the
notation

(
j

α

)
for the multinomial coefficient, where α ∈ ZN,

∑N
i=1 αi = j , and

(
j

α

) = j !
α! if

each αi � 0, else
(
j

α

) = 0.
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Definition 4. For λ, ν ∈ P (N) the coefficient
〈
λ

ν

〉
is defined by the expansion

e
j

1mν =
∑

|λ|=|ν|+j

〈
λ

ν

〉
mλ

for j = 0, 1, 2, . . . .

We establish some basic properties as well as an explicit formula for this coefficient, and
also explain the relation with the generalized binomial coefficient.

Proposition 1. For λ, ν ∈ P (N) the following hold:

(1) let j = |λ| − |ν| > 0, then〈
λ

ν

〉
=
∑{(

j

λ − σ

)
: σ + = ν

}
.

Note
(

j

λ−σ

) = 0 if any component λi − σi < 0, the sum is over all distinct permutations
of ν, (including any possible zero components to make ν an element of NN

0 );

(2)
〈
λ

ν

〉 �= 0 if and only if ν ⊂ λ;

(3)
〈
λ

λ

〉 = 1.

Proof. Expanding e
j

1mν we obtain

e
j

1mν =
∑{(

j

α

)
xαxσ : α ∈ NN

0 , |α| = j, σ + = ν

}
.

Since this is a symmetric polynomial, the coefficient of mλ equals the coefficient of xλ, namely
the sum of

(
j

α

)
with α + σ = λ (component-wise addition). For any σ with σ + = ν if σi > λi

for some i then the corresponding term is zero, by definition of the multinomial coefficient.
For part (2), ν ⊂ λ (and |λ| = |ν| + j ) implies

(
j

λ−ν

)
> 0; conversely if

(
j

λ−σ

) �= 0 for some σ

with σ + = ν then ν ⊂ λ (if σi � λi for each i then σ + ⊂ λ; indeed, let w be a permutation so
that νi = σw(i) for each i, so that νj � νi = σw(i) � λw(i) for 1 � i � j then νj � λj because
it is less than or equal to at least j components of the partition λ). Part (3) is trivial. �

The coefficients
〈
λ

ν

〉
are a modification of the generalized binomial coefficients which have

appeared in several contexts such as Jack polynomials, see Lassalle [7]; part (2) of proposition 1
is a special case of his results. There are useful formulae involving contiguous partitions
(if ν ⊃ λ and |ν| = |λ| + 1 then ν = λ + εi for i = 1 or λi−1 > λi).

Proposition 2. Suppose λ, σ ∈ P and |σ | � |λ| + 1, also j = 1 or λj−1 > λj then〈
λ + εj

λ

〉
= 1 + #{i : λi = λj + 1} (2.1)

〈σ
λ

〉
=
∑{〈

σ

λ + εi

〉 〈
λ + εi

λ

〉
: i = 1 or λi−1 > λi

}
. (2.2)

Proof. Suppose λs−1 > λs = λj−1 = λj + 1 (or s = 1, or j = 1), then there are exactly
j − s + 1 distinct permutations wλ for which λ+εj −wλ has no negative components (namely
the transpositions w = (i, j) for some i with s � i � j − 1, or w = 1). Each such term
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contributes 1 to the sum defining
〈
λ+εj

λ

〉
. For the second part, let n = |σ | − |λ| and consider

the coefficient of mσ in

en
1mλ =

∑
|ν|=|λ|+n

〈ν
λ

〉
mν = en−1

1

∑
i

〈
λ + εi

λ

〉
mλ+εi

=
∑

|ν|=|λ|+n

∑
i

〈
ν

λ + εi

〉 〈
λ + εi

λ

〉
mν

summing over i = 1 and i � 2 with λi−1 > λi. �

We are ready to consider the transition matrices between the mλ and m̃λ bases (that the
second set is a basis will be immediately proved).

Definition 5. The transition matrices A(µ, λ), B(µ, λ) ( for λ,µ ∈ P, |λ| = |µ|) are
defined by

m̃λ =
∑

µ

A(µ, λ)mµ mλ =
∑

µ

B(µ, λ)m̃µ.

By definition 4 it follows that

A(µ, λ) =
〈

µ

(λ2, λ2, λ3, . . .)

〉
.

The condition A(µ, λ) �= 0 leads to the following ordering of partitions.

Definition 6. For λ,µ ∈ P the relation µ 	 λ means that |λ| = |µ| and λi � µi for all i � 2.

It is clear that 	 is a partial ordering, µ 	 λ implies µ1 � λ1, l(λ) � l(µ) and that the
maximum element of P (N)

n is (n). In fact µ 	 λ implies that λ dominates µ, but 	 is not
identical to the dominance ordering. Also 	 is distinct from the reverse lexicographic ordering
(see [8, p 6]), for example the partitions (3, 1, 1, 1) and (2, 2, 2) are comparable in both forms
of reverse-lex but not in 	. Further the partitions {λ : λ1 = λ2} are minimal elements; indeed
suppose µ 	 λ and λ1 = λ2, then µ1 � λ1 = λ2 � µ2 which implies µ1 = µ2 = λ1; thus∑

i�2(µi − λi) = 0 and λ = µ (by definition, µi − λi � 0 for each i � 2). There are
exceptional minimal elements of the form (m + 1,m, . . . ,m), with n = Nm + 1, but these are
minimal only for P (N) since (m,m, . . . ,m, 1) 	 (m + 1,m, . . . ,m, 0). We see that the matrix
A(µ, λ) is triangular (A(µ, λ) �= 0 implies µ 	 λ), unipotent (A(λ, λ) = 1) and its entries
are non-negative integers.

Proposition 3. For n � 0 the set
{
m̃λ : λ ∈ P (N)

n

}
is a basis for the symmetric polynomials of

degree n in N variables. The transition matrix B(µ, λ) is triangular for the ordering 	 and is
unipotent with integer entries.

Regarding the dependence on N: begin by assuming that n � N so that l(λ) � N for each
λ ∈ Pn and the defining equations for A(µ, λ), B(µ, λ) are unambiguous, then to restrict to a
smaller number of variables, say M < N , substitute xM+1 = xM+2 = · · · = xN = 0 with the
effect of removing all terms with l(λ) > M or l(µ) > M . Thus the transition matrices for the
case of M variables with n > M are principal submatrices of the general transition matrices
(deleting rows and columns labelled by λ with l(λ) > M). If the index set P(N)

n is ordered
first in decreasing order of l(λ) and then with respect to 	 (possible, since µ 	 λ implies
l(µ) � l(λ)) then the triangularity makes it obvious that the submatrix of B is the inverse of
the submatrix of A; see the example of B for P (4)

6 at the end of this section.



Symmetric functions and BN -invariant spherical harmonics 10397

It remains to establish an explicit formula for B(µ, λ). The formula itself was postulated
based on computer algebra experimentation, and explicit known formulae for N = 3. The
proof will be by induction on n and requires showing that the claimed formula satisfies the
following contiguity relations.

Proposition 4. For λ,µ ∈ P (N)
n , and σ ∈ P (N)

n+1 with σ1 = σ2,∑
ν⊃λ,|ν|=|λ|+1

〈ν
λ

〉
B(µ + ε1, ν) = B(µ, λ) (2.3)

∑
ν⊃λ,|ν|=|λ|+1

〈ν
λ

〉
B(σ, ν) = 0. (2.4)

Proof. Multiply both sides of the equation mλ = ∑
µ	λ B(µ, λ)m̃µ by e1 to obtain∑

ν⊃λ,|ν|=|λ|+1

〈ν
λ

〉
mν =

∑
µ	λ

B(µ, λ)m̃µ+ε1 =
∑

ν⊃λ,|ν|=|λ|+1

〈ν
λ

〉∑
τ	ν

B(τ, ν)m̃τ .

Since the set
{
m̃τ : τ ∈ P (N)

n+1

}
is a basis the desired equations are consequences of matching

the coefficients in the two right-hand side expansions. �

Lemma 1. Suppose B ′(µ, λ) is a matrix satisfying equations (2.3) and (2.4) with B replaced
by B ′, has the same triangularity property as B and B ′(σ, σ ) = 1 for each σ ∈ P with σ1 = σ2,
then B ′(µ, λ) = B(µ, λ) for all µ, λ ∈ P (with |λ| = |µ|).

Proof. This is a double induction on |λ| and λ1 − λ2. For any σ ∈ P with σ1 = σ2 the
hypothesis shows that B ′(µ, σ ) = 0 for µ �= σ (since σ is minimal) and B ′(σ, σ ) = 1, thus
B ′(µ, σ ) = B(µ, σ) for all µ (with |µ| = |σ |). Suppose that B ′(µ, λ) = B(µ, λ) for all
µ, λ ∈ P with |λ| = |µ| = n or with |λ| = |µ| = n + 1 and λ1 − λ2 � j for some j � 0. Fix
ν ∈ P with |ν| = n + 1 and ν1 − ν2 = j + 1 and let λ = ν − ε1. Then τ ⊃ λ and |τ | = n + 1
imply τ = ν or τ = λ+εi with i � 2 and λi−1 > λi = νi . Note that

〈
λ+εi

λ

〉 = 1 by equation (2.1).
For any µ ∈ Pn+1, by hypothesis

B ′(µ, ν) = B ′(µ − ε1, λ) −
∑

i�2,λi−1>λi

〈
λ + εi

λ

〉
B ′(µ, λ + εi)

replacing B ′(µ − ε1, λ) by 0 if µ1 = µ2. By the inductive hypothesis each term B ′(σ, τ )

appearing on the right-hand side satisfies B ′(σ, τ ) = B(σ, τ ). By the proposition, B ′(µ, ν) =
B(µ, ν). This completes the induction. �

In the following formula the coefficient
〈
σ

τ

〉
is used with partitions whose first parts are

deleted, also (µ2 − 1, µ3, . . .) is not a partition if µ2 = µ3 and so the α+ notation is used; the
binomial coefficient

(−1
m

) = 0.

Theorem 1. For µ, λ ∈ Pn

B(µ, λ) = (−1)λ1−µ1

×
{(

λ1 − µ2

µ1 − µ2

) 〈
(µ2, µ3, . . .)

(λ2, λ3, . . .)

〉
+

(
λ1 − µ2 − 1

µ1 − µ2

) 〈
(µ2 − 1, µ3, . . .)

+

(λ2, λ3, . . .)

〉}
.

Proof. The proof is broken down into cases depending on the values of λ1 − µ1 and µ1 − µ2.
We let B ′(µ, λ) denote the right-hand side of the stated formula and proceed as in the lemma
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to show that B ′ satisfies equations (2.3) and (2.4). It is clear that B ′(µ, λ) �= 0 implies λi � µi

for all i � 2, that is, µ 	 λ. Also B ′(µ,µ) = 1 for each µ ∈ Pn. Fix µ, λ ∈ Pn and let
µ′ = (µ2, µ3, . . .), µ

′′ = (µ2 − 1, µ3, . . .)
+, σ ′ = (σ2, σ3, . . .), σ

′′ = (σ2 − 1, σ3, . . .)
+, λ′ =

(λ2, λ3, . . .) (these are partitions, but with components labelled by i � 2; for example
λ′ + ε2 = (λ2 + 1, λ3, . . .)). The partitions ν satisfying ν ⊃ λ and |ν| = |λ| + 1 are of
the form λ + εi with i = 1 or λi−1 > λi . We rewrite equation (2.3) (not yet proved!) as∑

i�2,λi−1>λi

〈
λ + εi

λ

〉
B ′ (µ + ε1, λ + εi) = B ′(µ, λ) − B ′ (µ + ε1, λ + ε1) .

The left-hand side equals

(−1)λ1−µ1−1
∑

i�2,λi−1>λi

{(
λ1 − µ2

µ1 + 1 − µ2

) 〈
µ′

λ′ + εi

〉
+

(
λ1 − µ2 − 1
µ1 + 1 − µ2

) 〈
µ′′

λ′ + εi

〉} 〈
λ + εi

λ

〉
.

The right-hand side equals

(−1)λ1−µ1

{((
λ1 − µ2

µ1 − µ2

)
−
(

λ1 + 1 − µ2

µ1 + 1 − µ2

)) 〈
µ′

λ′

〉
+

((
λ1 − µ2 − 1

µ1 − µ2

)
−
(

λ1 − µ2

µ1 + 1 − µ2

)) 〈
µ′′

λ′

〉}
= (−1)λ1−µ1−1

((
λ1 − µ2

µ1 + 1 − µ2

) 〈
µ′

λ′

〉
+

(
λ1 − µ2 − 1
µ1 + 1 − µ2

)〈
µ′′

λ′

〉)
.

Similarly rewrite equation (2.4) as∑
i�2,λi−1>λi

〈
λ + εi

λ

〉
B ′(σ, λ + εi) = −B ′(σ, λ + ε1)

with the left-hand side (of course, σ1 = σ2)

(−1)λ1−σ1
∑

i�2,λi−1>λi

{(
λ1 − σ2

σ1 − σ2

) 〈
σ ′

λ′ + εi

〉
+

(
λ1 − σ2 − 1

σ1 − σ2

) 〈
σ ′′

λ′ + εi

〉} 〈
λ + εi

λ

〉
and the right-hand side

(−1)λ1−σ1

((
λ1 − σ2

σ1 − σ2

) 〈
σ ′

λ′

〉
+

(
λ1 − σ2 − 1

σ1 − σ2

)〈
σ ′′

λ′

〉)
.

The goal is to show that the two sides are equal. We reduce the two cases to one by replacing
σ1, σ

′, σ ′′ by µ1 + 1, µ′, µ′′, respectively. Let E denote the difference between the two sides
(left − right), and let

E0 = −
(

λ1 − µ2

µ1 + 1 − µ2

)〈
µ′

λ′

〉
E1 =

(
λ1 − µ2

µ1 + 1 − µ2

) ∑
i�2,λi−1>λi

〈
µ′

λ′ + εi

〉 〈
λ + εi

λ

〉
−
(

λ1 − µ2 − 1
µ1 + 1 − µ2

) 〈
µ′′

λ′

〉

E2 =
(

λ1 − µ2 − 1
µ1 + 1 − µ2

) ∑
i�2,λi−1>λi

〈
µ′′

λ′ + εi

〉 〈
λ + εi

λ

〉
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then E = (−1)λ1−µ1−1(E0 + E1 + E2). We can assume µ′ ⊃ λ′ (µ 	 λ), because if any term
in E is nonzero then

〈
µ′
λ′
〉 �= 0 (if

〈
µ′′

λ′+εi

〉 �= 0 for some i then µ′ ⊃ µ′′ ⊃ λ′ + εi ⊃ λ′, and

similarly if
〈

µ′
λ′+εi

〉 �= 0 for some i then µ′ ⊃ λ′).

• Case 1: |µ′| = |λ′|. Here E1 = 0 = E2, because any coefficient
〈
σ

τ

〉
with |σ | < |τ | is

zero. Further µ1 = n − |µ′| = λ1 and thus E0 = 0 (from the binomial coefficient).

• Case 2: |µ′| = |λ′| + 1 and µ1 � µ2. Here E2 = 0 and λ1 = µ1 + 1, thus the coefficient
of
〈
µ′′
λ′
〉

is zero (specifically,
(

λ1−µ2−1
µ1−µ2

) − (
λ1−µ2

µ1+1−µ2

) = 1 − 1). The hypothesis implies
µ′ = λ′ + εj for some j � 2, that is, µ = (λ1 − 1, λ2, . . . , λj + 1, . . .). If j = 2 then
λ1 � λ2 + 2 otherwise j > 2 and λ1 − 1 � λj−1 > λj . Thus E0 + E1 = 〈

λ+εj

λ

〉− 〈
λ′+εj

λ′
〉
;

only the term with i = j in the sum is nonzero (we showed λj−1 > λj ). By equation (2.1)〈
λ+εj

λ

〉 = 〈
λ′+εj

λ′
〉
, since 1 /∈ {i : λi = λj + 1}.

• Case 3: |µ′| = |λ′|+1 and µ1 = µ2 −1 (that is, µ = σ −ε1 where σ1 = σ2). Here E2 = 0
and the binomial coefficients in E0, E1 are all equal to 1. Let µ′ = λ′ + εj . If µ′′ = λ′

then either j = 2, λ = (λ1, λ1 − 1, λ3, . . .), µ = (λ1 − 1, λ1, λ3, . . .) with λ1 > λ3 or
j > 2, λ = (λ1, λ1, . . . , λ1, λ1 − 1, λj+1, . . .), µ = (λ1 − 1, λ1, . . . , λ1, λj+1, . . .) (that
is, λi = λ1 for 1 � i � j − 1 and λj = λ1 − 1), which implies

E0 + E1 =
〈

µ′

λ′ + εj

〉 〈
λ + εj

λ

〉
−
〈
µ′′

λ′

〉
−
〈
µ′

λ′

〉
=
〈
λ + εj

λ

〉
− 1 −

〈
λ′ + εj

λ′

〉
= j − 1 − (j − 1)

by equation (2.1). If µ′′ �= λ′ then λj+1 < λ2 (so j > 2) and E0+E1 = 〈
λ+εj

λ

〉− 〈
λ′+εj

λ′
〉 = 0.

• Case 4: |µ′| � |λ′| + 2 and µ1 � µ2. Thus λ1 � µ1 + 2 � µ2 + 2 � λ2 + 2 and
equation (2.1) implies

〈
λ+εi

λ

〉 = 〈
λ′+εi

λ′
〉

for each i � 2, λi−1 > λi (which includes i = 2).
Also equation (2.2) applied to the truncated partition τ ′ = (τ2, τ3, . . .) with |τ ′| > |λ′|
shows that

∑{〈
τ ′

λ′ + εi

〉 〈
λ′ + εi

λ′

〉
: i = 2 or i > 2, λi−1 > λ

}
=
〈
τ ′

λ′

〉
.

Substituting τ ′ = µ′ and τ ′ = µ′′ in this equation shows that E0 + E1 + E2 = 0.

• Case 5: |µ′| � |λ′| + 2 and µ1 = µ2 − 1 (that is, µ = σ − ε1 where σ1 = σ2). Similarly
λ1 � (µ2 − 1) + 2 � λ2 + 1, and

〈
λ+εi

λ

〉 = 〈
λ′+εi

λ′
〉

for each i > 2 with λi−1 > λi . Either

λ1 � λ2 + 2 which implies
〈
λ+ε2

λ

〉 = 〈
λ′+ε2

λ′
〉 = 1 or λ1 = λ2 + 1 which implies µ2 = λ2 and〈

µ′
λ′+ε2

〉 = 0 = 〈
µ′′

λ′+ε2

〉
because (λ′ + ε2)2 > µ2 � (µ′′)2. In both cases equation (2.2) shows

E0 + E1 + E2 = 0 as previously (in the case λ1 = λ2 + 1 one has
〈
λ+ε2

λ

〉 = 2,
〈
λ′+ε2

λ′
〉 = 1).

Thus the matrix B ′(λ, µ) satisfies the hypotheses of the lemma,and the proof is completed.
�

There was only one part of the proof which depended on the µ′′ part of the formula: the
case |µ′| = |λ′| + 1, µ = σ − ε1 with σ1 = σ2 (of course the first steps of an induction proof
are crucial!). By way of example, here is the matrix B for P (4)

6
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1 −2 0 −2 8 0 2 −18 18
0 1 0 0 −10 0 0 42 −72
0 0 1 −3 3 0 3 −9 9
0 0 0 1 −3 0 −2 13 −18
0 0 0 0 1 0 0 −9 24
0 0 0 0 0 1 −2 2 −2
0 0 0 0 0 0 1 −4 9
0 0 0 0 0 0 0 1 −6
0 0 0 0 0 0 0 0 1


with the rows and columns labelled by [2211, 3111, 222, 321, 411, 33, 42, 51, 6] (suppressing
the commas in the partitions). We point out an application of the {m̃λ}-basis: suppose that
a symmetric polynomial is to be restricted to the subspace

{
x :

∑N
i=1 xi = 0

}
; this can be

done by expressing it in terms of m̃λ (using the coefficients B(λ,µ)) and then restricting to
the subspace, with the effect of annihilating all m̃λ with λ1 > λ2 and leaving an expression in
the basis {mλ : λ1 = λ2}.

3. Invariant harmonic polynomials

In the following, the symmetric polynomials have the argument x2 = (
x2

1 , . . . , x
2
N

)
(and y2

is similarly defined). Thus e1(x
2) = ‖x‖2, and the former will often be used in equations

involving symmetric functions. We recall the basic facts about the Poisson kernel, that is,
the reproducing kernel, for harmonic polynomials Hn, (see Dunkl and Xu [5, ch 5]). The
intertwining operator V is a linear isomorphism on polynomials such that V P(N)

n = P(N)
n for

each n,DiV = V ∂
∂xi

for 1 � i � N , and V 1 = 1. Here the reflection group is a direct product
and so the intertwining map is the N-fold tensor product of the one-dimensional transform
(see [3, theorem 5.1]), defined by (for n � 0)

V x2n
1 =

(
1
2

)
n(

κ + 1
2

)
n

x2n
1 V x2n+1

1 =
(

1
2

)
n+1(

κ + 1
2

)
n+1

x2n+1
1 .

Then let Kn(x, y) = 1
n!V

(x)(〈x, y〉n), for x, y ∈ RN, n � 0 (V (x) acts on x). The key properties

of Kn needed here are Kn(xw, yw) = Kn(x, y) for w ∈ BN andD(x)
i Kn(x, y) = yiKn−1(x, y)

for 1 � i � N .

Definition 7. Let dω denote the normalized rotation-invariant surface measure on the unit
sphere S = {x ∈ RN : ‖x‖ = 1}, and for polynomials f, g the inner product is

〈f, g〉S = cκ

∫
S

f (x)g(x)

N∏
i=1

|xi|2κ dω

where cκ = �

(
N
2 +Nκ

)
�

(
1
2

)N

�

(
N
2

)
�

(
κ+ 1

2

)N so that 〈1, 1〉S = 1.

The reproducing kernel for Hn, n � 1 is

Pn(x, y) =
(

N

2
+ Nκ + n − 1

) ∑
j�n/2

(−1)j

(
N
2 + Nκ

)
n−1−j

j !
2n−2j‖x‖2j‖y‖2jKn−2j (x, y)

and satisfies 〈Pn(·, y), f 〉S = f (y) for each f ∈ Hn. The general theory [2] for our
differential-difference operators shows that f ∈ Hn, g ∈ Hm,m �= n imply 〈f, g〉S = 0.
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Let K0
2n denote the kernel K2n(x, y) symmetrized with respect to the group ZN

2 (for fixed
x ∈ RN sum over the 2N points (±x1, . . . ,±xN) and divide by 2N ); it is the reproducing
kernel for H0

2n. Let KB
2n(x, y), PB

2n(x, y) denote the symmetrizations of K2n(x, y), P2n(x, y)

respectively, with respect to the group BN . Thus KB
2n(x, y) = 1

N !

∑
w∈SN

K0
2n(xw, y).

Proposition 5. For n � 1, x, y ∈ RN

K0
2n(x, y) = 2−2n

∑
α∈NN

0 ,|α|=n

1

α!
(
κ + 1

2

)
α

x2αy2α

KB
2n(x, y) = 2−2n

∑
λ∈P (N)

n

1

λ!
(
κ + 1

2

)
λ

mλ(x
2)mλ(y

2)

mλ(1N)
.

Proof. By the multinomial theorem, 〈x,y〉2n

(2n)! = 1
(2n)!

∑{( 2n

β

)
xβyβ : β ∈ NN

0 , |β| = 2n
}
.

Symmetrizing over ZN
2 removes monomials with odd exponents, and thus K0

2n(x, y) is the
result of applying V to

∑{
1

(2α)!x
2αy2α : α ∈ NN

0 , |α| = n
}
. Further (2α)! = 22|α|α!

(
1
2

)
α
, and

V x2α = ((
1
2

)
α

/(
κ + 1

2

)
α

)
x2α . For a fixed λ ∈ P (N)

n the sum 1
N !

∑{x2wαy2α : w ∈ SN, α+ = λ}
is a multiple of mλ(x

2)mλ(y
2), and evaluated at x = 1N = y the sum equals mλ(1N) (that is,

#
{
α ∈ NN

0 : α+ = λ
}
). The terms α! and

(
κ + 1

2

)
α

are invariant under SN . �

Corollary 1. For n � 1, x, y ∈ RN

PB
2n(x, y) =

(
N

2
+ Nκ + 2n − 1

) n∑
j=0

(−1)j

(
N
2 + Nκ

)
2n−1−j

j !
e1(x

2)j e1(y
2)j

×
∑

λ∈P (N)
n−j

1

λ!
(
κ + 1

2

)
λ

mλ(x
2)mλ(y

2)

mλ(1N)
.

Let PB
2n denote the space of BN -invariant elements of P

(N)

2n , then dim PB
2n = #P (N)

n . The
space of BN -invariant harmonic polynomials HB

2n is the kernel of �κ ; since �κ commutes
with the action of BN and maps P

(N)
2n onto P

(N)
2n−2 we see that dim HB

2n = #P (N)
n − #P (N)

n−1.

The map λ 
→ λ + ε1 is a one-to-one correspondence of P (N)

n−1 onto a subset of P (N)
n whose

complement is

P̃ (N)
n = {

λ ∈ P (N)
n : λ1 = λ2

}
.

Thus dim HB
2n = #P̃ (N)

n , and we will construct a basis for HB
2n whose elements are labelled in

a natural way by P̃ (N)
n . There is a generating function for the dimensions: for λ ∈ P̃ (N)

n the
conjugate λT (the partition corresponding to the transpose of the Ferrers diagram) of λ is a
partition with 2 � (λT )i � N for all i (no parts equal to 1 or exceeding N ); thus

∞∑
n=0

(
#P̃ (N)

n

)
qn =

N∏
j=2

(1 − qj )−1.

This expression yields an estimate for #P̃ (N)
n . Indeed, let M = lcm(2, 3, . . . , N),

∏N
j=2(1 −

qj)−1 = p(q)(1 − qM)−(N−1) for some polynomial p(q); thus #P̃ (N)
n = O

((
n
M

)N−2)
as

n → ∞. In KB
2n(x, y) expand each mλ(y

2) in the m̃µ-basis

KB
2n (x, y) = 2−2n

∑
µ	λ

B(µ, λ)

λ!
(
κ + 1

2

)
λ

mλ(x
2)

mλ(1N)
m̃µ(y2).
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This leads to the following.

Definition 8. For µ ∈ P (N)
n the BN -invariant polynomial hµ is given by

hµ(x) = 2−n
∑

λ∈P (N)
n ,µ	λ

B(µ, λ)

λ!
(
κ + 1

2

)
λ

mλ(x
2)

mλ(1N)
.

Recall that λ ∈ Pn and B(λ,µ) �= 0 imply l(λ) � l(µ) and λ ∈ P (N)
n .

Theorem 2. For µ ∈ P (N)
n , if µ1 > µ2 then �κhµ = 2hµ−ε1 and if µ1 = µ2 then �κhµ = 0.

Proof. From the basic properties of K2n it follows that �(x)
κ K2n(x, y) = ‖y‖2K2n−2(x, y).

Symmetrize this equation with respect to BN (and note that �κ commutes with the group
action) to obtain

�(x)
κ KB

2n(x, y) = 2−n
∑

µ∈P (N)
n

�(x)
κ hµ(x)m̃µ(y2)

= e1(y
2)KB

2n−2(x, y)

= 21−n
∑

σ∈P (N)
n−1

hσ (x)m̃σ+ε1(y
2).

By definition e1(y
2)m̃σ (y2) = m̃σ+ε1(y

2). Considering the equations as expansions in
{m̃µ(y2) : µ ∈ P (N)

n } shows �κhσ+ε1(x) = 2hσ (x) for σ ∈ P (N)
n−1 and �κhµ(x) = 0 if

µ1 = µ2. �

Corollary 2. The set
{
hµ : µ ∈ P̃ (N)

n

}
is a basis for HB

2n.

Proof. For λ,µ ∈ P̃ (N)
n the coefficient of mλ in hµ is δλµ

(
2nλ!

(
κ + 1

2

)
λ
mλ(1N)

)−1
and thus{

hµ : µ ∈ P̃ (N)
n

}
is linearly independent. Also dim HB

2n = #P̃ (N)
n . �

Besides the inner product on polynomials defined by integration over the sphere S there
is also the important pairing defined in an algebraic manner using the operators Di , namely

〈f, g〉h = f (D1, . . . ,DN) g(x)|x=0.

Since D2
i x

2n
i = 2n(2n − 1 + 2κ)x2n−2

i and D2
j x

2n
i = 0 for j �= i, we have that

〈
x2n

i , x2n
i

〉
h

=
22nn!

(
κ + 1

2

)
n

and 〈x2α, x2β〉h = δαβ22|α|α!
(
κ + 1

2

)
α

for α, β ∈ NN
0 , so that monomials

are mutually orthogonal. It follows that 〈mλ(x
2),mµ(x2)〉h = δλµ22nλ!

(
κ + 1

2

)
λ
mλ(1N) for

λ,µ ∈ P (N)
n . It was shown in ([3, theorem 3.8], see also [5, theorem 5.2.4]) that for f, g ∈ Hn

〈f, g〉h = 2n

(
N

2
+ Nκ

)
n

〈f, g〉S .

This allows the direct calculation of 〈hλ, hµ〉S for λ,µ ∈ P̃ (N)
n .

Proposition 6. For λ,µ ∈ P̃ (N)
n

〈hλ, hµ〉h =
∑

λ	σ,µ	σ

B(λ, σ )B(µ, σ)

σ !
(
κ + 1

2

)
σ

mσ (1N)

〈hλ, hµ〉S = 2−2n

((
N

2
+ Nκ

)
2n

)−1

〈hλ, hµ〉h.
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Computations with small degrees (n � 8) show that there are no product (linear factors
in κ) formulae for the inner products and {hλ} is not an orthogonal basis. But the bi-orthogonal
set for

{
hµ : µ ∈ P̃ (N)

n

}
can be described exactly. The idea is to extract a certain multiple

of the coefficient of mλ(y
2) for λ ∈ P̃ (N)

n in the Poisson kernel PB
2n(x, y). Indeed PB

2n is a
multiple of

n∑
j=0

∑
σ∈P (N)

n−j

(−1)j e1(x
2)j e1(y

2)j

(
N
2 + Nκ

)
2n−1−j

j !σ !
(
κ + 1

2

)
σ

mσ (x2)mσ (y2)

mσ (1N)

=
n∑

j=0

∑
λ∈P (N)

n

∑
σ∈P (N)

n−j

(−1)j e1(x
2)j

〈
λ

σ

〉 (N
2 + Nκ

)
2n−1−j

j !σ !
(
κ + 1

2

)
σ

mσ (x2)mλ(y
2)

mσ (1N)
.

Then let

gλ(x) =
n∑

j=0

e1(x
2)j

j !
(−N

2 − Nκ − 2n + 2
)
j

∑
σ∈P (N)

n−j ,σ⊂λ

〈
λ

σ

〉
1

σ !
(
κ + 1

2

)
σ

mσ (x2)

mσ (1N)

so that the coefficient of mλ(y
2) in PB

2n(x, y) is
(

N
2 + Nκ

)
2n

gλ(x). Observe that gλ(x) =
1

λ!
(
κ+ 1

2

)
λ

mλ(x
2)

mλ(1N)
+ ‖x‖2g′

λ(x) where g′
λ(x) is a polynomial of degree 2n − 2.

Proposition 7. For λ,µ ∈ P̃ (N)
n the inner product

〈gλ, hµ〉h = δλµ

2n

λ!
(
κ + 1

2

)
λ
mλ(1N)

.

Proof. Indeed

〈gλ, hµ〉h = 1

λ!
(
κ + 1

2

)
λ
mλ(1N)

〈mλ(x
2), hµ(x)〉h + g′

λ(D)�κhµ(x)

= δλµ

2n

λ!
(
κ + 1

2

)
λ
mλ(1N)

by the properties of the pairing 〈·, ·〉h. �

Essentially gλ is (a scalar multiple of ) the projection of mλ(x
2) onto H2n. The method of

orthogonal projections to construct bases of harmonic polynomials was studied in more detail
by Xu [10].

Although the formulae for the inner products of the hλ are complicated, the determinant of
the Gram matrix (〈hλ, hµ〉h)λ,µ∈P̃ (N)

n
has an elegant expression in terms of linear factors in the

parameter κ . One reason that this matters is that the singularities (both zeros and poles) in the
L2-norms of classical orthogonal polynomials are closely related to the underlying algebraic
structure. That is, the norms involve gamma functions (for example, Jacobi polynomials) and
the poles are determined by linear functions of the parameters (with rational coefficients).
In the present situation there is a parametrized operator and inner-product structure and the
formula for the Gram determinant precisely exhibits the singularities. We now evaluate the
determinant of the Gram matrix of

{
hλ : λ ∈ P̃ (N)

n

}
using the 〈·, ·〉h inner product; the value

for 〈·, ·〉S is just a product of a power
(
#P̃ (N)

n

)
of the proportionality factor with the previous

one. It is perhaps surprising that the calculation can be carried out by finding the determinant
for the entire set

{
hλ : λ ∈ P (N)

n

}
, which can easily be done. By the orthogonality of {mµ} we

see that the Gram matrix G(λ,µ) = 〈hλ, hµ〉h for λ,µ ∈ P (N)
n satisfies

G = BCBT det G = (det B)2 det C = det C
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where the diagonal matrix C(λ,µ) = δλµ

(
λ!
(
κ + 1

2

)
λ
mλ(1N)

)−1
; just as in proposition 6

〈hλ, hµ〉h = ∑
λ	σ,µ	σ

B(λ,σ )B(µ,σ )

σ !
(
κ+ 1

2

)
σ
mσ (1N )

for any λ,µ ∈ P (N)
n . We already showed that B is

triangular with 1s on the main diagonal so that det B = 1. Let

Dn = det C =
∏

λ∈P (N)
n

(
λ!

(
κ +

1

2

)
λ

mλ(1N)

)−1

and let D̃n = det G̃, where G̃ is the principal submatrix of G for the labels λ,µ ∈ P̃ (N)
n . We

will show that

D̃n = Dn

Dn−1

∏
λ∈P (N)

n−1

(
(λ1 − λ2 + 1)

(
Nκ +

N

2
+ 2 (n − 1) − (λ1 − λ2)

))
.

A simplified form of this will be given later. The idea of the proof is to use the orthogonal
decomposition P(N)

n = ⊕
j�n/2 ‖x‖2jHn−2j to produce a transformation of the Gram matrix

into block form. The underlying relation is the product formula for �κ : for m, j � 0 and any
f ∈ P(N)

m

�κ‖x‖2jf (x) = 4j

(
m + j − 1 +

N

2
+ Nκ

)
‖x‖2j−2f (x) + ‖x‖2j�κf (x).

Specializing to harmonic polynomials f ∈ Hm and iterating this formula shows that

�s
κ‖x‖2jf (x) = 22s (−j)s

(
−m − j + 1 − N

2
− Nκ

)
s

‖x‖2j−2sf (x) (3.1)

for s � 0; note �s
κ‖x‖2j f (x) = 0 for s > j (see [3, theorem 3.6]). Suppose f ∈ Hn−2i ,

g ∈ Hn−2j

(
i, j � n

2

)
then

〈‖x‖2if (x), ‖x‖2jg(x)〉h = δij22i i!

(
n − 2i +

N

2
+ Nκ

)
i

〈f, g〉h
(by the symmetry of the inner product we can assume i > j and use equation (3.1)).

Lemma 2. Suppose f ∈ P(N)
n and f (x) = ∑

j�n/2 ‖x‖2j fn−2j (x) with fn−2j ∈ Hn−2j for

each j � n
2 then �i

κf = 22i i!
(
n− 2i + N

2 + Nκ
)
i
fn−2i if and only if fn−2j = 0 for each j > i,

(that is, �i+1
κ f = 0).

Proof. By equation (3.1) and for each i � n
2

�i
κf (x) =

∑
i�j�n/2

22i (−j)i

(
−n + j + 1 − N

2
− Nκ

)
i

‖x‖2j−2ifn−2j (x).

This is an orthogonal expansion, hence �i
κf (x) equals the term in the sum with j = i if and

only if fn−2j = 0 for all j > i. �

The lemma allows us to find the lowest-degree part of the expansion of hµ for µ ∈ P (N)
n ,

since �i
κhµ = 2ihµ−iε1 if i � µ1 − µ2 and �i

κhµ = 0 if i > µ1 − µ2, by theorem 2. We
will use an elementary property of any inner-product space E: suppose {fi : 1 � i � m} is
a linearly independent set in E, for some k < m let ρ denote the orthogonal projection of E
onto span{fi : 1 � i � k}, then

det(〈fi , fj 〉)mi,j=1 = det(〈fi , fj 〉)ki,j=1 det(〈(1 − ρ)fi, (1 − ρ)fj 〉)mi,j=k+1.
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The proof is easy: for each i > k there are coefficients aji for 1 � j � m so that
ρfi = ∑k

j=1 ajifj . Let A be the m × m matrix with entries Aji = δji except Aji = −aji for
1 � j � k < i � m. Let G be the Gram matrix of {fi}mi=1 and let G′ = AT GA so that

G′
ij = G′

ji =


〈fi , fj 〉 for 1 � i � j � k

〈fi , (1 − ρ)fj 〉 = 0 for 1 � i � k < j � m

〈(1 − ρ)fi, (1 − ρ)fj 〉 for k + 1 � i � j � m.

Thus det G′ = (det A)2 det G = det G and G′ has a 2 × 2 block structure with 0 in the
off-diagonal blocks. We apply this to the projection of PB

2n onto HB
2n, denoted by ρn.

We write e1 for ‖x‖2 as before. For µ ∈ P (N)
n let hµ = ∑µ1−µ2

j=0 e
j

1hµ,j (x) with each
hµ,j ∈ HB

2n−2j (and by the above discussion, hµ,i is a multiple of hµ−iε1 for i = µ1 − µ2),

then (1 − ρn)hµ = ∑µ1−µ2
j=1 e

j

1hµ,j . Thus Dn = D̃n det M where M is the Gram matrix for{
(1 − ρn)hµ : µ ∈ P (N)

n , µ1 > µ2
}
. The span of this set is e1P

B
2n−2, and PB

2n−2 can be
decomposed just like PB

2n. Indeed
{
(1 − ρn)hµ : µ ∈ P (N)

n , µ1 = µ2 + 1
}

is a basis for
e1H

B
2n−2, since (1 − ρn)hµ = e1hµ,1, a nonzero multiple of e1hµ−ε1 , for µ1 = µ2 + 1. Repeat

the previous step with the projection e1ρn−1e
−1
1 to express det M as a product. Here is a formal

inductive argument.
Let M(j)(λ, µ) be the symmetric matrix indexed by P (N)

n with entries

M(j) (λ, µ) =


〈
ei

1hλ,i , e
i
1hµ,i

〉
h

for λ1 − λ2 = µ1 − µ2 = i < j

0 for λ1 − λ2 < min (µ1 − µ2, j)〈
λ1−λ2∑
i=j

ei
1hλ,i ,

µ1−µ2∑
i=j

ei
1hµ,i

〉
h

for λ1 − λ2, µ1 − µ2 � j.

By the symmetry M(j)(λ, µ) = 0 if µ1 − µ2 < min(λ1 − λ2, j). The matrix M(N) has a
diagonal block decomposition (zero blocks off the diagonal) with one block for each set of
labels

{
λ ∈ P (N)

n : λ1 = λ2 + i
}
, equivalently P̃ (N)

n−i , for each i = 0, 1, . . . , n − 2, n (the set

P̃ (N)

1 is empty). The matrix M(0) = G, the Gram matrix of
{
hλ : λ ∈ P (N)

n

}
. We show

that det G = det M(0) by proving det M(j) = det M(j+1) for each j < n. Only the principal
submatrix of M(j) labelled by λ with λ1 −λ2 � j need be considered. This is the Gram matrix
of a certain basis for e

j

1PB
2n−2j ; the projection e

j

1ρn−j e
−j

1 maps this space onto e
j

1HB
2n−2j =

span
{
e

j

1hλ,j : λ1 = λ2 +j
}
. Now observe that

(
1−e

j

1ρn−j e
−j

1

)∑λ1−λ2
i=j ei

1hλ,i = ∑λ1−λ2
i=j+1 ei

1hλ,i

for λ with λ1 − λ2 > j . The projection argument shows det M(j) = det M(j+1).
The determinant of the principal submatrix of M(N) labelled by

{
λ ∈ P (N)

n : λ1 = λ2 + i
}

is a multiple of D̃n−i . Let

ci =
(

22i i!

(
2n − 2i +

N

2
+ Nκ

)
i

)−1

.

By lemma 2 hλ,i = ci�
i
κhλ = 2icihλ−iε1 for λ1 = λ2 + i. Further〈

ei
1hλ,i , e

i
1hµ,i

〉
h

= c−1
i 〈hλ,i , hµ,i〉h = 22ici

〈
hλ−iε1 , hµ−iε1

〉
h

for λ1 − λ2 = µ1 − µ2 = i. The correspondence σ 
→ σ + iε1 is one-to-one from P̃ (N)
n−i to{

λ ∈ P (N)
n : λ1 = λ2 + i

}
. Thus

Dn = det G =
n∏

i=0

(
i!

(
2n − 2i +

N

2
+ Nκ

)
i

)−d(n−i,N)

D̃n−i

where d(j,N) = #P̃ (N)
j , for j � 0. In particular, d(1, N) = 0 and D̃1 = 1.
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Theorem 3. The determinant D̃n of the Gram matrix of
{
hλ : λ ∈ P̃ (N)

n

}
for the inner product

〈·, ·〉h satisfies

D̃n = Dn

Dn−1

n∏
i=1

(
i

(
2n − i − 1 +

N

2
+ Nκ

))d(n−i,N)

and for n � 2 the following holds:

D̃n =
∏

λ∈P̃ (N)
n

(
λ!

(
κ +

1

2

)
λ

mλ(1
N)

)−1

×
∏

µ∈P (N)
n−1

(µ1 − µ2 + 1)
(
2n − 2 − µ1 + µ2 + N

2 + Nκ
)

(µ1 + 1)
(
κ + 1

2 + µ1
)

#{j : µj = µ1}
.

Proof. From the above result

Dn

Dn−1
= D̃n

∏n−1
j=0

(
j !
(
2n − 2 − 2j + N

2 + Nκ
)
j

)d(n−1−j,N)∏n
i=1

(
i!
(
2n − 2i + N

2 + Nκ
)
i

)d(n−i,N)
.

In the numerator replace j by i − 1; the ratio

(
2n−2i+ N

2 +Nκ

)
i−1(

2n−2i+ N
2 +Nκ

)
i

= 1
2n−i−1+ N

2 +Nκ
, and

this proves the first formula. The ratio Dn

Dn−1
can be simplified by using decomposition

P (N)
n = P̃ (N)

n ∪ {
µ + ε1 : µ ∈ P (N)

n−1

}
; indeed each µ ∈ P (N)

n−1 contributes

µ!
(
κ + 1

2

)
µ

mµ(1N)

(µ + ε1)!
(
κ + 1

2

)
µ+ε1

mµ+ε1(1N)
= 1

(µ1 + 1)
(
κ + 1

2 + µ1
)

#{j : µj = µ1}
.

Note that mµ(1N) = N!/
∏

s�0(#{j : µj = s})! so the change from mµ(1N) to mµ+ε1(1
N)

is the replacement of s! by 1!(s − 1)! where s = #{j : µj = µ1} (except when µ = (0) in
which case mµ(1N)/mµ+ε1(1

N) = 1
N

; this only affects the vacuous equation D̃1 = 1). The

other part of the expression for D̃n is a product with
∑n

i=1 d(n − i, N) = #P (N)

n−1 terms (and if

µ ∈ P (N)
n−1 with µ1 − µ2 + 1 = i then µ ∈ P̃ (N)

n−i + (i − 1)ε1, 1 � i � n). �

The determinant of the Gram matrix for 〈·, ·〉S is an easy consequence by proposition 6:

det(〈hλ, hµ〉S)
λ,µ∈P̃ (N)

n
=
(

22n

(
N

2
+ Nκ

)
2n

)−d(n,N)

D̃n.

When N � n the products in D̃n are over all partitions Pn,Pn−1 and the inner-product formula
for 〈hλ, hµ〉h in proposition 6 can be considered with N as indeterminate because

mσ(1N) = mσ (1l(σ ))

(
N

l(σ)

)
= mσ(1l(σ ))(−1)l(σ )(−N)l(σ )/ l(σ )!

being a polynomial in N, for σ ∈ P and N � l(σ ). So the formula for D̃n is an identity in
the variables κ,N (for N � n). It would be interesting if there were an orthogonal basis for
HB

2n so that for each element f the squared norm 〈f, f 〉h is a product of integral powers of
factors linear in κ ; this is almost suggested by the nice form of D̃n but so far such a basis has
not been found. The author’s suspicion is that the problem is the lack of a sufficiently large
set of commuting self-adjoint operators on HB

2n.
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4. Concluding remarks

As mentioned in the introduction there is an orthogonal basis for the BN -invariant
wavefunctions in terms of the products of generalized Hermite polynomials in Cartesian
coordinates. These are orthogonal for the measure |t|2κ e−t2

dt on R. For α ∈ NN
0 let

ψα(x) = ∏N
i=1

(
L

(κ−1/2)
αi

(
ωx2

i

)|xi|κ
)

exp
(−ω

‖x‖2

2

)
then Hψα = ω(2|α| + N(2κ + 1))ψα

(for the Hamiltonian H defined in (1.1)). The functions ψα are pairwise orthogonal

and
∫

RN |ψα(x)|2 dx = ω−N(κ+1/2)�
(
κ + 1

2

)N (κ+ 1
2 )α

α! . The resulting BN -invariant basis{∑
α+=λ ψα : λ ∈ P (N)

}
is orthogonal but does not involve spherical harmonics.

There is an isometry between the space of ZN
2 -invariant polynomials with the inner

product 〈·, ·〉S and polynomials with the L2 inner product for the measure
(
�
(

N
2 + Nκ

)/
�
(
κ + 1

2

)N)∏N
i=1 y

κ−1/2
i dy1 · · · dyN−1, on the simplex

{
y ∈ RN :

∑N
i=1 yi = 1, yi � 0

each i
}
, induced by the correspondence y = (

x2
1 , . . . , x

2
N

)
. Then H0

2n is isomorphic to the
space of polynomials of degree n orthogonal to all polynomials of lower degree. The basis{
hλ : λ ∈ P̃ (N)

n

}
maps on to a basis for the polynomials symmetric in (y1, . . . , yN).

If one gives up the BN-invariance then there is no problem in constructing a nice orthogonal
basis for Hn. This basis consists of products of Jacobi polynomials; a conceptual derivation
in terms of simultaneous eigenfunctions of a set of commuting self-adjoint operators can be
found in [4, theorem 2.8].

In this paper, we constructed a basis for BN -invariant spherical harmonics by introducing
a new basis for the symmetric functions. The determinant of the Gram matrix of the
basis was explicitly evaluated. Long ago it was found that the wavefunctions of electrons
in a crystal with cubical symmetry have (energy level) degeneracies for n � 12; in our
notation P̃ (3)

i = {(1, 1)}, {(1, 1, 1)}, {(2, 2)}, {(2, 2, 1)} for i = 2, 3, 4, 5, respectively but
P̃ (3)

6 = {(2, 2, 2), (3, 3)}. We have not found a natural and constructive way of orthogonally
decomposing HB

2n when dim HB
2n > 1; a candidate for such a decomposition is the self-adjoint

operator
∑

1�i<j�N(xiDj − xjDi )
4 but its eigenvalues are irrational over the field Q(κ) of

rational functions in κ . Yet the methods in this paper should give some insight into the problem
of constructing invariant harmonics for the general B-type spin Calogero–Moser model.
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